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An approx imate  solution is der ived for  the one-d imens iona l  diffusion of impur i t i es  in a mel t  
in d i rec t ional  c rys ta l l i za t ion  within a r e s t r i c t e d  volume and motion of the in te r face  and con-  
stant speed.  Resul ts  a r e  given for  the posi t ion of the diffusion l aye r  and the impur i ty  con-  
centra t ion.  

The ma te r i a l  is mel ted in a crucible  with the dope in product ion of single c r y s t a l s  by B r i d g m a n ' s  
method; then the crucible  is r em oved  f r o m  the hot zone and the ma te r i a l  c ry s t a l l i z e s .  The dope d i s t r i bu -  
t ion in the c rys t a l  is substant ia l ly  dependent on diffusion in the mel t .  

Consider  the dope dis t r ibut ion in the mel t  in c rys ta l l i za t ion  for  a cyl indr ical  c ruc ib le  of length l .  The 
speed of the shunt w is a s sumed  to be constant ,whi le  the initial dis t r ibut ion P0 of the dope in the melt  is 
uni form.  The diffusion coefficient  D and the equi l ibr ium par t i t ion  coefficient k a r e  constant ,  with k < 1. 
The p r o b l e m  is cons idered  as one-d imens iona l .  It is difficult to obtain an exact  solution of this p ro b l em,  
because  it is fo rmula ted  for  a finite region of va r iab le  length (one of the boundar ies  is mobile) .  The in-  
t eg ra l  method [1-3] al lows one to der ive  s epa ra t e ly  for  two per iods  an approx imate  solution to the diffu- 
sion p rob l em for  c rys ta l l i za t ion  in a r e s t r i c t e d  volume (Fig. 1). The p rob l em is fo rmula ted  in a mobile  co-  
ordinated s y s t e m  ox with the or igin  at the c rys ta l l i za t ion  f ront .  

In the f i r s t  per iod,  a diffusion layer  of thickness  6 is fo rmed  at the c rys ta l l i za t ion  f ront ,  in which the 
impur i ty  concentrat ion va r i e s  f r o m  maximal  at the front  i tself  down to P0; this per iod  ends when the upper  
boundary of the diffusion l aye r  r eaches  the end of the cruc ib le .  Then the condition for  the f i r s t  per iod is 
l - w r  > 6. 

The equations for  the f i r s t  per iod take the f o r m  

8p a p  _ D a2--P-P + w - - ,  (1) 
Ox Ox 2 Ox 

p (x, O) = Po, (2) 

oo(o, ~ )  ( k - 1 ) ~  0(0, ~), (3) 
Ox D 

p(6, ~) = p0, (4) 

op(6, ~) _ o ,  ( s )  
Ox 

o~P (~' ~) 0; (6) 
ax 2 

boundary conditions (4)-(6) a r e  the mathemat ica l  formula t ion  for  the boundary layer ;  the dope dis t r ibut ion 
within the diffusion l ayer  is r ep re sen ted  as a polynomial  of third degree:  

P = ao + alx + a2x ~ + asx 8. (7) 

F r o m  (3)-(6)we find the coeff icients  in (7): 
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F i g . 1 .  Scheme :  A) fo r  the  f i r s t  p e r i -  
od; B) fo'r the s econd  one,  s < 6 .  

and in tegra te  with l imi t s  0 and 8 : 

I n t eg ra t i on  g ives  

3Po 3poN 3pen 
a~ = 3 -~ e-------N- ' a~ = 3 q- eN ' a2 --= e (3 -~- 8N) ' a~ =- 

whe re  N = ( k -  l )w /D .  

Then  the above po lynomia l  g ives  (7) as  

P = a + e N  T + 3 x - - - ~  --t- 

o r  

PeN 
8 ~ (3 q- eN) ' 

(8) 

Po 3 -q- eN , 

We de r ive  the mot ion  of the diffusion l aye r  f r o m  the equat ion 
of conse rva t i on  of ma t t e r ;  we mul t ip ly  both  p a r t s  of (1) by dx 

8 6 8 

�9 f OO f ~ 1 7 6  o t "~176 ax+w. ox ,) Or 00x2 dx. 
0 0 0 

.=~176 or : o.co., o.,o.,]ox +o[o,o., .,o q 
5 

where  0 = ; p d x ;  the e x p r e s s i o n  fo r  0 is found f r o m  (8): 
0 

0 =  3 + e N  + " 

(1o) 

(11) 

(12) 

(13) 

/ e e ~ \  

§ T )  - 

We r e w r i t e  (11) as  

We d i f fe ren t ia te  the  left  s ide  of  this  exp re s s ion  and take  6 as  a funct ion of r ;  we s e p a r a t e  the v a r i a b l e s  and 
get  

3 ~ N8 ~ 
-~- + e + -T (14) 

3 de = dr. 
(3 q- eN) (we - -  3D) 

We t r a n s f o r m  (14) and in t eg ra t e :  

3 3 N8 ~ 

3 - ~ + ~ - 8 +  4 d S = x + K ,  (15) 
a6 ~ + b6 + c 

w h e r e  a = wN, b = 3 ( w - N D ) ,  c = - 9 D ,  and K is an  a r b i t r a r y  cons tan t ,  which is found f r o m  the ini t ial  cond i -  
t ion 

8-----0 for r = O .  (16) 

We in tegra te  this  e x p r e s s i o n  and find the a r b i t r a r y  constant  as  

A 1 In ( 2 a x - b b - - V - ~ ) ( b q - V ' ~ )  I ax'-kbx+c q-,Mx= 
1/b'--4-------~ (2ax-~b_l_V.~)(b_V-b~74ac) -kBln  c r, (17) 

w h e r e  

a= w2(k- 1) ", b = 3w(2 - -  k); c = - -  9D; 
D 

w(k - -1 )  ~ 4 J 8  ; B = 8 .  w~(k 1) -- 4~J @ 
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Fig.  2. Thickness  and posit ion of upper boundary of diffu- 
sion layer  in the sys tem of coordinates  ox and olx.  

As bZ-4ac  = 9w2k 2, b~f~-4ac = 3wk, b + b~f~-4ac = 6w, and b - ~ / b ~ - 4 a c  = 6w(1-k) ,  we get that (17) 
s implif ies  to 

where  

. . . . .  3 
LIn 6 - - 2 " ' ( 1 - - k ) ~  + B i n  w~(l--k)9D ~ ~ - -  w~-(2~k)6+3D 1 +--x= ' r ,4co (18) 

3wk 4w~k (k 1) 

Equation (18) gives the ~" dependence of 5 in inexplicit  fo rm.  

I h e  express ion  in the logar i thm is meaningful if it is g r ea t e r  than zero;  if the quantit ies become zero ,  
then r ~ ,  s ince coefficients L and B a re  negative for  K < 1; then the thickness of the diffusion l aye r  does 
not inc rease  without l imit  but tends to a ce r ta in  finite value, which is found by equating to ze ro  the quantity 
in the logari thm: 

6--2 w ~ = 0 ,  
D 

which gives 

6max=3D/w; (19) 

if 5 = 3D/w, the quantity in the logar i thm in the second t e r m  on the left in (18) also becomes  zero .  

Then the thickness of the diffusion layer  va r ies  during the growth f ro m  0 to 3D/w; we de termined  the 
dope concentrat ion at the crys ta l l iza t ion  front  for  5 = 5max, for  which purpose in (8) we put x = 0 and 6 
= 6ma x = 3D/w: 

3Po 90 p = :  

3+ --~-(k--l) 3D k 
V) 

F r o m  (18) we get that 5 -- 5ma x for  ~" = ~; we can assume approximate ly  that the impuri ty  that the dope 
distr ibution in the melt  is s teady when a t ime r 1 has passed  such that the thickness of the diffusion layer  dif-  
f e r s  by only 1% f rom its maximal  value; we put 5 = 0.99 3D/w in (18) to get 

.rz=Lln] 0.06 - +Blnt0.01kt+0.7425 D 
0.06+5.94k w2 

The equations for  the second per iod a re  

(2o) 

Op D ~P 
--~- = Ox2" + w-~x  , ~ > To, O ~ . x < l - - w % ,  (21) 

611 



p(x, "~o) = fl(x), 
o o ( o ,  "0 ( ~ - t ) w  

- -  p (o ,  +), 
Ox D 

Op(s, "0 O. 
Ox 

Condition (24) is given at  the mobile boundary,  whose coordinate  is defined by 

s = So - -  w O: - -  "Co) = l - -  w'~. 

(22) 

(23) 

(24) 

(25) 

The  initial d is t r ibut ion ft(x) is obtained f r o m  the solution for  the f i r s t  pa r t  of the p rob l em.  

We seek  a solution in the f o r m  of (7) and do this via the additional boundary condition 

O~O( s, "0 = O. 
Ox ~ 

(26) 

We use (23), (24), and (26) to exp res s  all  the coefficients  in (7) in t e r m s  of as; then the concentra t ion d i s -  
t r ibut ion in the mel t  is 

p = a s --ff s + 3 # x  - -  3sx 2 + x~). (27) 

To  find a 3 we use  the in tegra l  for  the conservat ion  of ma t t e r  for  the dope; both s ides  in (21) a r e  mult ipl ied 
by  dx and in tegra ted  with l imi t s  0 and s ,  which gives 

dO D[OP(S , . r )  0p(0, x) ] (28) 
d--~ : c)x Ox + tv [p (s, T) - -  9(0, T)], 

& 

whore 0 = .I p dx; we use  (27) to get an express ion  for  0: 
0 

O=a3 (k- -  1)w -4- " 

Substitution of (27) into (28) gives 

d__O = a3(ws3 - 3Ds~). (30) 
dr 

Different iat ion of 0 with r e s p e c t  to 'r, with s taken as  a function of r ,  gives with substi tut ion into (30) that 

daSd~- [ (k--3D1)w s=+3s'. 4 ] --as [[le9Z)wS~+3s~]dS=a~(ws~--3D#).~ (31, 
This  express ion  is of the f o r m  

- ~ + C  (x)a s = 0, (32) 

where  

[9D + 3 s ( k - -  1)w] ds - - ( k - -  l)(ws + 3D)w 

c( '0=  ~ (33)  

3Ds + ~- s~(k - l)w 
' t  

The genera l  solution to (32) is 
T 

(34) 

The  constant P is de te rmined  f r o m  the initial condition 

"r - "r o p = p(O, 'q). (35) 

We find p(0,~') f r o m  (8) by putting x = 0 and 5 = 50"0) = So: 

p(0, % ) =  3P~ 
3 + son 

(36) 
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Fig ,  3. Relat ive concentra- 
t ion of impuri t ies  at c r y s t a l -  
l ization for  var ious  posit ions 
in the olz coordinate sys tem.  

F r o m  (27) and (,34) 

p __ a o = poN 
s~ (3 + So N) (37) 

and fur ther  

o~ exp[- -  tl C(x)~ ]. (38) 
a s =  s~(3+SoN) 

S0 

Finally,  we put the solution to the second par t  in the fo rm 

P(x,~) = s~[3D + ~(k - -  1)sol exp - -  C(~)dx 
To 

[ 3Ds2 -~-3S2X 3SX2-]--X3 ]. (39) 
" • ( k - -  1)w 

We find p(0, r) by putting x = 0 in (39): 

] w(k--1)  "-~o exp 1 C(~)dx . 
3 + D so ~* 

(40) 

To calculate i C(T)dT it is convenient toconver t  f rom the variable r to s; in the present  case s < so, so we 

al ter  the l imits of integration to get ; s; 
- -  C (x) dr ---- ~ C (s) ds. (41) 

W 
To s 

Note that the density distributions descr ibed by (8) and (27) coincide for T = T 0. 

These  solutions have been used to calculate the dope distribution in the melt in a cyl indrical  crucible 
with l = 100 mm; the crysta l l iza t ion rate was taken as 10 -5 m / s e c  (36 mm/h) ,  with D = 5 . 1 0  -7 m2/sec and 
k = 0.2. Figure  2a shows 5 as a function of T as derived f rom (18); this was found by setting 5 and de t e r -  
mining T. Curve b charac te r i zes  the position of the crysta l l iza t ion front in the coordinate sys t em olz ,whtch 
is related to the fo rm.  We add the ordinates of lines a and b to get curve c, which charac te r i zes  the upper 
boundary of the diffusion layer  in the otz coordinate sys tem.  

The f i rs t  period comes to an end when 5 + wr 0 = l, i .e.,  when line c in tersects  the horizontal  s traight  
line with ordinate l; in the case of Fig .2  we get 5 = 0.042 m and T o = 5800 sec ,  where 6 < 5max, since 

3D 3-5.10 -~ 
8max -- -- = 0.15 m. 

w 10 -5 

Figure 3 shows the relat ive dope concentrat ion at the front for var ious posit ions of the lat ter  in the 
olz coordinate sys tem;  this was calculated f rom (9) for r < To, z < 0.058 m f rom the solution for the f i rs t  par t  
of the problem with x = 0, while for  T > To, z > 0.058 m it was calculated f rom (40) via the solution for the 
second part ;  T = To, p/po = 1.29. The figure also shows for  z > 0.058 m the dope concentrat ion {broken line) 
derived f rom (9) on the assumption that the crysta l l izat ion occurs  in a crucible of length l > WT + ~ for z 
< 0.1 m (in the general  case for  crys ta l l iza t ion in a crucible of semiinfinite length). 

It is c lear  that the res t r i c t ion  on the crucible length must be taken into account,  because otherwise 
one would get considerable  e r r o r  in determining the concentrat ion at the crysta l l iza t ion front when this ap-  
proaches  the end of the crucible .  If we can neglect diffusion in the solid state in Br idgman ' s  method, the 
relat ive dope distribution in the finished c rys ta l  will be determined by the curve of Fig.  3; here  Plz=O = Pok; 
if one cannot neglect  sol id-s ta te  diffusion, one has to solve also for the distr ibution in the solid phase for  a 
region with mobile boundary on the basis  of the solutions obtained here for diffusion of the dope in the melt .  

5 is the thickness of diffusional layer;  
D is the diffusivity; 

N O T A T I O N  
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P 
w 

k 
T 
S 

is the partial density of admixtures; 
is the rate of crystallization; 
is the equilibrium distribution coefficient; 
is the time; 
is the position of moving boundary. 
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