IMPURITY DIFFUSION IN THE MELT IN CRYSTAL
PRODUCTION BY BRIDGMAN'S METHOD

L. A, Goryainov UDC 532,72:54-143

An approximate solution is derived for the one-dimensional diffusion of impurities in a melt
in directional crystallization within a restricted volume and motion of the interface and con-
stant speed, Results are given for the position of the diffusion layer and the impurity con-
centration,

The material is melted in a crucible with the dope in production of single crystals by Bridgman's
method; then the crucible is removed from the hot zone and the material crystallizes, The dope distribu-
tion in the crystal is substantially dependent on diffusion in the melt,

Consider the dope distribution in the melt in crystallization for a cylindrical crucible of length [, The
speed of the shunt w is assumed to be constant, while the initial distribution py of the dope in the melt is
uniform, The diffusion coefficient D and the equilibrium partition coefficient k are constant, with k < 1,
The problem is considered as one-dimensional, It is difficult to obtain an exact solution of this problem,
because it is formulated for a finite region of variable length (one of the boundaries is mobile). The in-
tegral method [1-3] allows one to derive separately for two periods an approximate solution to the diffu-
sion problem for crystallization in a restricted volume (Fig.1), The problem is formulated in a mobile co-
ordinated system ox with the origin at the crystallization front,

In the first period, a diffusion layer of thickness 6 is formed at the crystallization front, in which the
impurity concentration varies from maximal at the front itself down to py this period ends when the upper
boundary of the diffusion layer reaches the end of the crucible. Then the condition for the first period is
L—-wT > 6,

The equations for the first period take the form
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ot Ox? 0x
o (x, 0) = py, 2
0p(0, ) (k—l)w
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0x?

boundary conditions (4)-(6) are the mathematical formulation for the boundary layer; the dope distribution
within the diffusion layer is represented as a polynomial of third degree:

0 = ay+ ayx + ayx? + ags. 0

From (3)-(6) we find the coefficients in (7):

Institute of Transport Engineers, Moscow. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol, 20,
No. 5, pp.859-866, May, 1971, Original article submitted May 4, 1970,

© 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York,
N. Y. 10011 All rights reserved. This article cannot be reproduced for any purpose whatsoever without
permission of the publisher. A copy of this article is available from the publisker for $15.00.

609



xZ Xz v _ %0y . SN 3pN . oV
Ay = ———— 5 4; = Py = v g = s
1 36N 3+ 0N 8(3 + oN) 82(3 + 6N)
. melt
N - where N = (k —1)w/D,
N
@ N Then the above polynomial gives (7) as
0 ) N 3 3 58
w Po X
~ ~ . =— — BN e ]
x N e 3+6N(N T %52> (8)
0 ) 5
|
3 \ ) or
0! solid DI b I} N(S . x 3
a Nhase” R S 2 )
Shase z v s ©

Fig,1, Scheme: A) for the first peri~ .
od; B) for the second one, s < 4. We derive the motion of the diffusion layer from the equation
of conservation of matter; we multiply both parts of (1) by dx

and integrate with limits 0 and &:

8 6 8
sl > 2,
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Integration gives
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where 6 = j'_pdx; the expression for 8 is found from (8):
0
. L ( 5 _ﬁi) (12)
3+N\ N 4]
We rewrite (11) as
8 8
i(7+ 4 >= w6 —3D (13)
dt \ 348N 346N

We differentiate the left side of this expression and take 6 as a function of '7'; we separate the variables and
get

3 3 Ne®

vt (14

(3+N) @b —3p) D=4
We transform (14) and integrate:

3 3 N

R
y__2 ~ gb (15)
a5 + B+ ¢ =T+K,

where @ = wN, b = 3(w—ND), ¢ =—9D, and K is an arbitrary constant, which is found from the initial condi-
tion
8=0 for t=0. (16)

We integrate this expression and find the arbitrary constant as

1 (2ax + b— V' 5*—4ac)(b +V b — 4dac) B axz—l—bx—]-c{_’_.Mx:T,

— 17
VE—dac (2ax+ b+ VP— dac)(b—V P — dac) ¢ (17)
where
o PE=D o ap@ k)= —9D;
D
3D 3 9 ' 9 Dk 3
A=_ _— R ',B._'—_‘ — ——— ] M:———,
wk—1) (4 + 8 ) 8 wik—1) 4w
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Fig,2, Thickness and position of upper boundary of diffu-
sion layer in the system of coordinates ox and o;x.

As b-dac = 9w¥?, Vb%~4dac = 3wk, b + Yb* - dac = 6w, and b—Vb?—4ac = ew(l-k), we get that (17)
simplifies to

6—22. 8
2(] —
Lin — D +Bln[——-——~———w (1 2k) 62-——@——(2—;/3)5-!—1]4-—?1‘7‘:7’ (18)
6 — 2= (1—F)S 9D 3D 4w
D
where
L A ___ 3 "1+ikz).
3wk | dwh(k— 1) 2

Equation (18) gives the T dependence of 6 in inexplicit form,

The expression in the logarithm is meaningful if it is greater than zero; if the quantities become zero,
then 7+, since coefficients L and B are negative for K < 1; then the thickness of the diffusion layer does
not increase without limit but tends to a certain finite value, which is found by equating to zero the quantity
in the logarithm:

6—2 -2 50,
D

which gives
Omax=3D/w; (19)
if 6 = 3D/w, the quantity in the logarithm in the second term on the left in (18) also becomes zero,
Then the thickness of the diffusion layer varies during the growth from 0 to 3D/w; we determined the

dope concentration at the crystallization front for 6 = Omax, for which purpose in (8) we put x = 0 and 6
= Gma.x = SD/W:

P = 390 — _QL‘
3 _.‘“.’_(k__nﬂ k
D w

From (18) we get that 6 = 6., for T = %; we can assume approximately that the impurity that the dope
distribution in the melt is steady when a time 7, has passed such that the thickness of the diffusion layer dif-
fers by only 1% from its maximal value; we put 6 = 0,99 3D/w in (18) to get

0.06 { D (20)
=Ln|————— [+ BlIn[0.01&| +0.7425 — .
g 0061594, | T BInl00lE] ”
The equations for the second period are
dp p op
— =D — -, T>T, 0<<x<<l—uwr,
w e Ve T o (21)
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Y (xr TD) = fl(x)v (22)
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Ox
Condition (24) is given at the mobile boundary, whose coordinate is defined by
§=8,—w(T—1y) = | — wr. (25)
The initial distribution f;(x) is obtained from the solution for the first part of the problem,
We seek a solution in the form of (7) and do this via the additional boundary condition
P(s, 1)
il 6 S N7 A )
Ox? (26)

We use (23), (24), and (26) to express all the coefficients in (7) in terms of ag; then the concentration dis-
tribution in the melt is

p=a, (% % 4 352 — 3sx? 1+ 19). (27)

To find a5 we use the integral for the conservation of matter for the dope; both sides in (21) are multiplied
by dx and integrated with limits 0 and s, which gives

de dp(s, 1) 9p(0, 1) (28)
—_— D _—_ —_
=[5 20 e 0 o0,
where @ = g pdx; we use (27) to get an expression for 6:
0
3D 3 (29)
0= — s gt
as[ E—Dw T4 ]
Substitution of (27) into (28) gives
a8 _ ay(ws® — 3Ds?). (30)
drt

Differentiation of 8 with respect to T, with s taken as a function of 7, gives with substitution into (30) that

day sD st -+ —is‘* 4+ ay 9D 524-3s% }ﬂi = @, (ws® — 3Ds?). (31)
dv {(k—1w - 4 (— Nw dt
This expression is of the form
95 1 ¢ (w)ay =0, (32)
dt
where
[9D + 3s(k — 1)w] éis__ —(k— 1) {ws + 3D)w
Cr)= 3" (33)
3Ds 4 T s*(k— 1w
The general solution to (32) is
T
a, = Pexp [_ S C(r)dt]. (34)
To
The constant P is defermined from the initial condition
T=7 p=p0 7). 35)
We find p(0, 7) from (8) by putting x = 0 and 6 = 6(7) = s¢:
0 (0, Tp) = 2o (36)

3+SON'
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0/pg : From (27) and (34)
20 0 oN
! P=gg= —p 37
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and further .
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/ ” $@+ s ) / ()
To
/ Finally, we put the solution to the second part in the form
T
10 ! —_
o a”4 qga z p(x,'c) — 5 pow(k 1) exp[ o 5\ C(’C)d‘t :I
Fig.3. Relative concentra- $0[3D + w(k— 1) s,] .
tion of impurities at crystal- _ ’
lization for various positions Cx [ DS | gey 36 e ] (39)
in the 04z coordinate system, (t— Dw
We find p(0, T) by putting x = 0 in (39):
T
3 2 .
0(0, 7) = B e [_fcmdr] . (40)

s 2lsl s Ly
T

To calculate j C(T)dT it is convenient to convert from the variable T to s; in the present case s < s, so we
To .

alter the limits of integration to get
T So
—fcmﬁ:-i—gcwm. (41)
w .
To s

Note that the density distributions described by (8) and (27) coincide for T = Ty.

These solutions have been used to calculate the dope distribution in the melt in a cylindrical crucible
with I = 100 mm; the crystallization rate was taken as 107° m/sec (36 mm/h), with D = 5.1077 m?/sec and
k = 0.2, Figure 2a shows & as a function of T as derived from (18); this was found by setting 6 and deter-
mining 7, Curve b characterizes the position of the crystallization front in the coordinate system o4z, which
is related to the form, We add the ordinates of lines a and b to get curve ¢, which characterizes the upper
boundary of the diffusion layer in the 04z coordinate system,

The first period comes to an end when 6 + w7 = I, i.e.,, when line c intersects the horizontal straight
line with ordinate I; in the case of Fig.2 we get 6 = 0,042 m and T, = 5800 sec, where § < Omaxs since

6max = §2= —3—2‘9‘-—7- =0.15 m
w 1073

Figure 3 shows the relative dope concentration at the front for various positions of the latter in the
o3z coordinate system; this was calculated from () for T < 7, z < 0,058 mfromthe solutionfor the firstpart
of the problem with x = 0, while for 7 > 7y, z > 0,058 m it was calculated from (40) via the solution for the
second part; T = T, /0y = 1.29, The figure also shows for z > 0,058 m the dope concentration (broken line)
derived from (9) on the assumption that the crystallization occurs in a crucible of length I > wT + 6 for z
< 0.1 m (in the general case for crystallization in a crucible of semiinfinite length),

It is clear that the restriction on the crucible length must be taken into account, because otherwise
one would get considerable error in determining the concentration at the crystallization front when this ap-
proaches the end of the crucible, If we can neglect diffusion in the solid state in Bridgman's method, the
relative dope distribution in the finished crystal will be determined by the curve of Fig, 3; here Plg=o = Pek;
if one cannot neglect solid-state diffusion, one has to solve also for the distribution in the solid phase for a
region with mobile boundary on the basis of the solutions obtained here for diffusion of the dope in the melt,

NOTATION

é is the thickness of diffusional layer;
D is the diffusivity;
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is the partial density of admixtures;

is the rate of crystallization;

is the equilibrium distribution coefficient;
is the time;

is the position of moving boundary,

w3 R 40
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